TH

PMENT

ADVAN(EDL GRAPH HICS DEV VELO
MMODORE6

E THE
EMFORT!

MACHINE LIGHTNING
by OASIS SOFTWARE

Copyright Notice

Copyright © by Oasis Software. No part of this manual may be reproduced on any
media without prior written permission fram Oasis Software.

This manual

Piracy has reached epidemic proportions and it is with regret that we are forced
to reproduce this manual in a form which cannot be photocopied. Our apologies for
the inconvenience this may cause to our genuine custamers. A reward will be paid
for information leading to the successful prosecution of parties infringing this
Copyright Notice.

NOTE

This manual is essential for the use of Machine Lightning. For this reason we
would warn custamers to look after it very carefully, as separate manuals will not
be issued under any circumstances whatsocever.

Copyright © by Oasis Software

CONTENTS
INTRODUCTION

64 - MAC

Loading fram Disk
Loading fram Tape
Notation
Directive Statements

. BYTE

. DBYTE

.WORD

.PAD

.END

. BLOCK

.ORG

. CEPMAC

. ENDMAC

. IFBQ

. IFNEQ

. IFPOS

. IFNEG

. IFEND

.ELSE

PRINT

.LIST

. NOLIST

. PAGE

. PAGEIF

.SKIP

.TITLE

.WIDTH

.HEIGHT

. INTNUM

.FILE
Camment Statements
Arithmetic Expressions in Cammand Mode
Using the Editor

Function Keys

EDITOR

RESIDENT

DISK

LIST

PRINT

DELETE

RENUMBER

MEM

NEW

AUTO

MANUAL

MOVE

QoPY

FIND

CHANGE
Editor error messages
Loading and Saving

LOAD

SAVE

Using a

FSAVE

MLOAD

MSAVE

OLOAD

OSAVE

oC+ & OC-

Printer

CENTRO

CTRL

*®

Printer pagenation
INTNUM

SETPAGE

SKIp

TITLE

Setting up the printer

DOS Support

e

Formatting a disk
Delete a file
Rename a file
Validate a disk
Duplicate disk
Copy file

Print Directory
Read errer Channel
Pattern Matching
DEVICE

Using more than one drive

The Assembler in Resident mode

ASM
OFFSET
RUN

The Assembler in Disk Mode

ASM

Assembler ERROR messages

64 - MON

Monitor Cammands

DECIMAL

MLIST

DUSR

The Symbolic Disassembler

BYTE
ASCII
WORD
DBYTE
TABLES
TABDEL
TABCLR

15
15
15
15
16
16
16
16
16
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
19
19
19
19
20
20
21
21
21
21
21

22

22
23
23
23
23
23
23
24
24
24
24
24
25
25

25
26
26
26
26
26
26

Defining Symbols
DASM
FDASM
SYS
Monitor ERROR messages
The DEBUGGER/TRACER
OPT

IRACE

6502 ARCHITECTURE
Byte - length registers
Word - length registers
Flags

6502 Instruction set

6502 Addressing Modes

NUMBER BASE TABLE/OP-COODES

THE GRAPHICS ROUTINES

Memory Organisation

Manory Locations

Passing Parameters

Accessing the Routines

Using Interrupts

Creating a stand alone program

SOUND ROUTINES

EXAMPLE SUBROUTINES

26

27
27
27
27
27
28

28
28
28
28

28
28
28

29
29
29
29
29
30
32
35

39

58

MACHINE LIGHTNING FOR THE COMMODORE 64

by David Hunter

The COMMODORE 64 is widely recognised as having the most powerful sound and
graphics hardware available on any hame camputer, and as a result of this there is
a rich selection of video games available for it, the most successful of which are
written in machine code. The author of such a game has two major problems to
overcane - he has to have same way of designing the graphics to be used in the
game, and he has to have a set of debugged machine-code routines to place the
graphics on the screen. Machine Lightning is designed to overcame these problems.
It contains all the ingredients needed to produce cammercial machine-code games,
and consists of four campatible parts:

1. TMik SPRITE GENERATOR

This is used to design and edit graphics to be used in the game. The sprites are
saved to tape or disk in a form that can be used by the graphics routines.

2. BASIC LIGHTNING

Basic Lightning is an extension to the 64's BASIC interpreter which contains
camands corresponding to the graphics routines in Machine Lightning. Thus, you
can use Hasic Lightning to test ideas easily before implamenting them using
Machine Lightning. Basic Lightning is also available separately.

3. 64-MAC/MON

This is a cambined assembler/monitor which is used to write the game itself. Of
course, you don't have to use it for writing video games; it can be used like any
other assembler. 64-MAC/MON was used to write the graphics routines which are part
of the Machine Lightning package, and it was also used to write Basic Lightning.

4. THE GRAPHICS ROUTINES

The graphics routines consist of 10K of machine code with routines to PUT and GET
software sprites to and fram the screen, scroll, enlarge or spin sprites and
exchange data between two sprites or the screen. Collision detection is supported,
as well as the 64's own hardware sprites.

Games written using the graphics routines can be marketed without restriction -
all we ask is that you put a small credit on the packaging.

The sprite generator program and Basic Lightning are described in the Basic
Lightning manual which is included along with this one. Before you can use the
graphics routines, you will have to read the section on Basic Lightning's graphics
cammands.

Most of this manual is taken up by the instructions for 64 MAC/MON; Section 19
deals with the graphics routines.

64-MAC/MON 1.

64-MAC/MON provides a camprehensive set of over 70 cammands for writing and
debugging assembly language programs on the COMMODORE 64. It includes a line
editor for the creation of source text, a full two-pass macro assembler, a
symbolic disassambler, a machine code monitor and a tracer.

The editor autamatically checks the syntax of lines as they are typed in, and
formats the source text when it is listed. It includes block delete, move and
copy as well as search and replace commands and autamatic line numbering.

The assembler can be operated in either 'resident' or 'disk' mode. Resident mode
is ideal for learning about assembly lanquage or writing small programs - assembly
is extremely fast, at over 20,000 lines per minute. Because text is tokenised
when in memory, programs of over 2,500 lines can be written without having to use
disk mode. In disk mode, linked files on floppy disk may be assambled. The size
of program that can be written in this manner is only limited by the amount of
mass storage available; about 8,500 lines of code in the case of the 1541 single
floppy disk. The assambler also includes conditional assambly, cross-referencing
and a printer pagination facility.

The machine-code monitor cammands allow direct inspection and modification of
memory - cammands to list, move, relocate, campare, modify, search and disassemble
blocks of memory are included. Up to 16 blocks which are printed as .BYTE, .WORD
or .DBYTE directives when disassembling may be defined.

The tracer can single step through a machine-code program, displaying the register
contents and the contents of up to 16 memory locations after executing each
instruction. Options exist to suppress scingle stepping and register printing or
to print only the program counter. Up to 16 locations can be defined at which the
registers are always printed, even if register printing is disabled.

Two copies of 64 MAC/MON are supplied with the disk version - one is located in
low memory and one in high memory. Only the low memory version is supplied on
tape.

The low memory version occupies memory from $0800 to $47FF. The BASIC ROM fram
$A000 to $BFFF is switched out of memory after 64 MAC/MON has loaded, of after
using RUN/STOP-RESTORE. However, 64 MAC/MON will still operate correctly if you
re-enable the ROM by setting bit 0 of location 1.

The high memory version resides fram $9000 to SCFFF. The BASIC ROM is enabled
whenever memory is accessed by one of the monitor cammands. This version 1s
incampatible with the graphics routines.

Note that in both cases, full use of the zero page by the user's.programs is
allowed.

1. LOADING

1.1 TOADING FROM DISK

After switching on the camputer system, insert the floppy disk into the drive and
type the following:

LOAD "ML",8,1

After about ten seconds you are asked to press "L" or "H" to select between the
low and high memory versions. Once you have done this it takes approximately one
minute to load.

1.2 LOADING FROM TAPL

After switching on type SHIFT RUN-STOP and start the tape recorder.

1.3 When 64-MAC/MON has loaded, the following message is printed:
64-MAC/MON V1.2L
QUPYRIGHT' 1984 DAVID HUNTER

NEW (Y/N)? Y
TEXT MEMORY?

Unless you wish to reserve memory for your own machine code routines, hit RETURN -
this reserves memory fram $4800 to SCFFF for use as text storage, giving 34816
bytes free. Otherwise, type in the lower and upper limits of memory to be used,
separated by a camma.

A 'BYTES FREE' message is then printed, follwed by the READY prawpt.

Note that the camputer's memory is campletely clearod after loading, but it
remains unaltered after subsequent NEW cammands.

The following locations in pages 2 and 3 :are altered by 64-MAC/MON:

$0200 to $0258 used for temporary string storage.

$028A repeat key flag.

$0291 disables SHIFT keys.

$0300 to S030B re-vectored to 64-MAC/MON warm start.

$0314 to $0315 IRQ re-vectored to allow us: of function keys.

2. 6502 ASSEMBLY LANGUAGE

This section is not intended to teach assembly language programming - if you are a
novice to the subject, we suggest that you read '6502 Assembly Language
Programming' by Lance A. Leventhal, which is published by McGraw-Hill. Another
worthwhile text is '6502 Assambly Language Subroutines' by Leventhal and Saville,
published by Osborne/McGraw-Hill. However, the information presented here should
suffice if you have knowledge of another microprocessor.

2.1 NOTATION

2.1.1 A <label> consists of a letter followed by up to fourteen of the following
characters:

LF LA , 9'..'9!' , PR , L , l$l

Examples: COOMPARE $NAMES OUTPUT3 T9

2.1.2 A <numerical constant> consists of one of the following:

"$" followed by a binary number

"@" followed by an octal number

a decimal number

"$" followed by a hexadecimal number

"t" followed by an ascii character (followed by an optional
second quote)

Examples: £00001101 $ACD9 '7 19 '&!
2.1.3 An <expression> consists of <numerical constant>s and/or <label>s separated
by the following operators:

"+" add

"-" subtract

"*" multiply

"/* divide

"?* exclusive-or
“&" logical and

There is no operator precedence, and brackets may not be used (this only applies
to <expression>s that are included as part of an assembly language program). If
'<' is placed before an expression, it is converted to a '&255' at the end of the
expressian when printing; similarly, '>' is converted to '/256°'.

Examples: NUMBERSBASE+3 <INTERPRETER-1 INPUI'SBUFFER/256 'Z'+l

2.1.4 A <string constant> is a number of ASCII characters enclosed in single
quotes. If one of the characters is to be a quote then two successive quotes must
be used.

Examples: ' BPLBMI BOCBCSBNEBEQBVCBVS ! reee 'S’y
2.2 ASSEMBLY LANGUAGE STATEMENTS

There are three types of assembler statements: directives, instructions and
caments.
2.2.1 Directive Statements

These may be considered as instructions which are obeyed at assembly time rather
than run time, A directive statement consists of the following:

<label> <directive> <operand> <camment>
The label and camment fields are optional, and the operand field is not required

in same cases. This assembler supports 27 directives, details of which are given
below:

2.2.1.1 .BYTE directive

This is used to define single-byte constants. It should be followed by a number
of <expression>s and/or <string constant>s separated by commas.

Bxamples:
POWERSOF'2 .BYTE 1,2,4,8,16,32,64,128
HEXCHARS .BYTE '0123456789ABCDEF* ,0

2.2.1.2 .DBYTE directive
This has the same syntax as .BYTE but it generates two-byte constants in
high-byte/low-byte order.
2.2.1.3 .WORD directive

This is the same as .DBYTE but the constants are in low-byte/high-byte order.

2.2.1.4 .PAD directive
The .PAD directive is used to pad out an area of program with NOP bytes.
Examples: .PAD *&SFF00+256-*
.PAD 6
2.2.1.5 .END directive
This is used to mark the end of an assanbly language program. It is optional if
the assembler is being used in resident mode.
2.2.1.6 .HOCK directive

This directive is used to reserve space - it is followed by an expression which is
added to the location counter.

Bxamples: INPUT$BUFFER BIOCK 72
XPOS .HDOCK 2

2.2.1.7 = (equals) directive
The '=' directive is used to equate a label to an <expression>.

Bamples: INTERRUPTPER IOD=3906/SAMPLERATE
CR =13

It is important to realise that these calculations are carried out at assambly
time, not run-time.

2.2.1.8 '*' is a reserved symbol which refers to the location counter during
assembly. The program location counter may be set like this: *=$9000, and blocks
of memory may also be reserved:

INPUT$BUFFER *=%4+72

2.2.1.9 .ORG directive
This is used to set the program location origin.
Example: .ORG $9000

Although this appears to be the same as *=$9000, there is a subtle difference
between them which is explained in section 9.3.

2.2.1.10 .DEFMAC directive

This directive should be placed at the start of a macro definition. The label
preceding the directive defines the macro name. It should be followed by a list
of formal parameter labels separated by cammas.

2.2.1.11 .ENOMAC directive

.ENDMAC is used at the end of a macro definition,

2.2.1.12 To call a macro in the program body, its name should be preceded by a
colon and followed by a list of actual parameter expressions separated by cammas.

Example... 1230 ouTPUT .DEFMAC START,MODE

1240 LDA #START&255
1250 LDY #START/256
1260 LDX #MODE

1270 JSR PRINT

1280 . ENDMAC

3450 BNE LOOP

3460 :OUTPUT ALPHA+6,3

In resident mode, macros can be defined anywhere in the text- either before or
after they are used, although it is best to keep them near the top of the program
as this speeds up assembly. When assembling programs in disk mode, all macro
definitions must be in the first file.

I1f a symbol is defined inside a macro and the macro is called more than once then
a 'label defined twice' error message will probably be printed. To circumvent
this problem, use the '*' symbol as in the following example:

100 DELAY .DEFMAC [EL
110 LDX #DEL
120 DEX

130 BNE *-1

140 ENDMAC
960 :DELAY 10
990 :DELAY 20

.

2.2.1.13 .IFEQ directive

If the expression following this directive is zero, assembly continues as normal,
otherwise code generation is suppressed until the next .FISE or .IFEND.

2.2.1.14 .IFNEQ directive

If the expression following this directive is non-zero, assembly continues as
normal, otherwise code generation is suppressed until the next .ELSE or .IFEND.

2.2.1.15 .IFPOS directive

If the expression following this directive is in the range 1 to 32767, assembly
continues as normal, otherwise code generation is suppressed until the next .ELSE
or .IFEND.

2.2.1.16 .IFNBEG directive

If the expression following this directive is in the range 32768 to 65535,
assembly continues as normal, otherwise code generation is suppressed until the
next .ELSE or .IFEND.

2.2.1.17 .IFEND directive

This is used at the end of a conditional assembly .IF construct- assembly after it
proceeds as normal.

2.2.1.18 .ELSE directive

This works like the ELSE statement in extended BASICs- if code generation is
suppressed, it is enabled, and vice-versa.

2.2.1.19 Examples of conditional assembly:

17450 oUTPUT . IFBQ CBM64

17460 JSR $F¥FD2 ;CBM64 OUTPUT ROUTINE
17470 BCS ERROR1

17480 .ELSE

17490 STX TEMP

17500 ‘TAX

17510 JSR $0238 ;ORIC AIMOS OUTPUT ROUTINE
17520 LDX TEMP

17530 PHA

17540 LDA KEYCHAR

17550 OMP #583 ;CONTROL-C?

17560 BE) ERROR2

17570 PLA

17580 . IFEND

2750 LDA #PRINTERON&255

2760 LDY #PRINTERON/256

2770 BIT PRINTERFLAG

2780 BMI PRINIMESSAGE

2790 PRHI =PRINTEROFF/256

2800 .IFNBQ PRINTERON/256-PRHI
2810 LDY #PRHI

2820 . IFEND

2830 LDA #PRINTEROFF&255

2840 PRINTMESSAGE JSR OUTPUTSMESSAGE
2.2.1.20 .PRINT directive

This directive should be followed by a <string constant> which is simply printed
when the directive is encountered during assembly.

Example: 19270 MESSAGES
19280 MSGl .BYTE '2?SYNTAX ERROR',0
19290 MSG2 .BYTE 'NUMBER TOO BIG',0
19440 MSG17 .BYTE 'FOUND ',0
19450 MSGEND)
19460 . IFNBQ MSGEND-MESSAGES/256
19470 .PRINT 'MESSAGE TABLE IS LONGER THAN 256 BYTES'
19480 .END
19490 . IFEND

2.2.1.21 .LIST directive

This directive turns on the generation of an assembler listing, except if object
code is being assembled to disk or tape.

2.2.1.22 .NOLIST directive

This turns off the generation of an assembler listing.

2.2.1.23 .PAGE directive

If an assembler listing is being output to the printer, this directive will start
a new page.

2.2.1.24 .PAGEIF directive

This should be followed by an <expression>- if this is greater than the number of
lines left on the page, a new page is taken, otherwise one line is skipped. This
only takes place if an assembler listing is being ocutput on the printer.

Example: .PAGEIF 24

2.2.1.25 .SKIP directive

This is used to print a certain number of blank lines when assembling a listing to
the printer.

Example: .SKIP 2

If the number is left out, a default value of 1 is assumed.

2.2.1.26 .TITLE directive

This should be followed by a <string constant> which will be printed at the top of
each new page on the printer.

Example: .TITLE 'C64 MACRO ASSEMHLER'

2.2.1.27 .WIDTH directive
This sets the number of characters printed per line on the printer.

Example: .WIDIH 96

2.2.1.28 .HEIGHT directive
This sets the number of lines printed per page on the printer.

Example: .HEIGHT 66

2.2.1.29 .INTNWM directive

This initialises the printer page number to zero.

2.2.1.30 .FILE directive

This directive is used to link files together in disk mode. At the end of each
file, there should be a .FILE directive followed by a <string constant> consisting
of the name of the next disk file.

Eample: .FILE 'AsSM4'’

2.2.1.31 All directives, apart fram .PAGE, .END and .ENDMAC may be abbreviated to
their first three letters.

Example: .BYT $C9,$A9,$89

2.2.2 Instruction statements

An instruction statement consists of:

<label> <opcode mnemonic> <operand> <camment>

The <label> and <camment> fields are optional. Details of the allowable <opcode

memonic>s and <operand>s are given in sections 16 and 17 of this manual
respectively.

1f during the first pass of assembly an instruction which has both zero page and
absolute addressing modes has as its operand an undefined expression, as in this
example:

10 *=12345

20 LDA FIVE
30 ABCDEF JMP ABCDEF
40 FIVE =5

and the expression is evaluated during the second pass as being less than 256, the
assembler will insert an extra NOP byte before the next label definition during
the second pass.

2.2.3 Cament statements

A cament statement consists of the following:

; <cament>

The <camment> may be any cammentary whatsoever.

3. ARITHMETIC EXPRESSIONS IN COMMAND MODE

3.1 In canmmand mode, line numbers, memory locations and so on are expressed as
<expression>s, as defined in 2.1.3, with the difference that brackets may be used
and operator precedence exists. A '#' is used to represent the logical-or
operator. A full stop may be used to represent the last result fram the CALC
cammand, and !<label> gives the line number in which a label is defined.

3.2 A <string> is defined as a series of characters bounded by one of the
following delimeters:

LS se () ¥+, -/

If the <string> is to be followed by an end-of-line, the delimeters may be
anitted.

4. USING THE EDITOR

4.1 The screen editor may be used as in BASIC. The RUN/STOP key terminates a
listing at any time. CTRL slows down printing and the SPACE bar can be used to
temporarily halt a listing- pressing it again restarts the listing.

4.2 FUNCTION KEYS

‘The function keys may be defined as follows, where n is the number of the function
key:

Fn=<string>

10

The back-arrow key at the top left of the keyboard can be used to represent
RETURN

Examples: F7=% .BYTE %
F4=AM, L

4.3 If you type in a line number followed by a line of 6502 assambly language, the
editor will put the line into memory according to its line number (these may be 1
to 65535). A line number followed by RETURN deletes that linc, and a line with
number zero will be put immediately after the last line enterad or deleted.

If the editor finds a syntax error in a line of source code, it prints an arrow
pointing to the error and an error message. This feature can hx: suppressed using
the EDIIOR cammand.

In any situation which could result in the destruction of the source text, the
editor will prampt with 'ARE YOU SURE (Y/N)? ' before proceeding.

In the following list of cammands, each ane is followed by its abbreviated version
in brackets.

4.4 EDITOR (ED.) cammand

This command puts the assembler into 'EDITOR' mode which disables the autamatic
syntax checking of lines; in this mode the text is not tokenised and therefore
cannot be assembled. Entering or leaving this mode destroys any text that is in
memory.

4.5 RESIDENT (RES.) cammand

This canmand puts the assembler into 'RESIDENT' mode in which programs may be
assambled directly fram memory. Further details are given in section 9 of this
manual.

4.6 DISK (DISC or DI.) cammand

This cammand puts the assembler into 'DISK' mode in which programs may be
assembled fram disk. Further details are given in section 10 of this manual.

4.7 LIST (L.) command

This is used to list lines of text. It may be followed by one or more line
specifications (separated by semicolons) of the following types:

<lire number>
<first line>,<last line>
,<last line>
<first line>,

Missing out the line specifications will list the whole source text.

Bxamples: LIST
LIST 23790
L. !'PRINTMNEMONIC,
LIST ,100;110;150,160
L. 23990
LIST 100,100+70

"

4.8 PRINT (P.) cammand

This is the same as LIST but no line numbers are printed.

4.9 DELETE (D.) cammand

This cammand is used to delete lines fram the source text- the syntax is the same
as for LIST. The editor will list the lines and then prampt with 'ARE YOU SURE
(Y/N)? ' before the lines are actually deleted - hit 'Y' to carry out the
deletion.

Examples: D. 23770
DEL 1440;2680;3725,3737

4.10 RENUMBER (R.) cammand
This renumbers lines in the text. It may take any of the following forms:

RENUMBER
first line no.=10, step size=10

RENUMBER X
first line no.=X, step size=10

RENUMBER X,Y
first line no.=X, step size=Y

If renumbering would cause a line number greater than 65535 to be generated, the
text is renumbered fram line 1 in steps of 1. After renumbering, the last line
number+step size is printed.

Examples: RENUMBER
R. 10000
REN. 100,25

4.11 MEM (M.) cammand

This command returns a message giving the free memory total and the current editor
mode. If the source file is very long there will be a delay of a few seconds
while symbol table garbage collection is carried out.

4.12 NEW (N.) cammand

This erases the source program in memory and then prampts for the memory to be
reserved for source text.

4.13 AUTO (AU.) cammand

This puts the camputer into AUTO mode- after a line number and text is entered,
the next line number is automatically printed. The default value of the step size
is 10. This can be changed by placing the new value after the command. If the
step size is zero, line number Os only are printed. To stop the printing of the
numbers, enter a blank line.

Bxamples: AU.
AUTO 5

12

